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CHAPTER 1
Introduction

A maximum flow network is defined by a set of arcs and a set
of points called nodes. Each arc joins two nodes and has associated
with it a positive capacity which represents the maximum amount of
flow that may pass over it. One of the nodes is designated as the
source and another as the sink. From these nodes, arc, and capaci-
ties the maximum amount of flow that may pass from source to sink
may be calculated.

This investigation is concerned with a sensitivity analysis on
such netwuorks. Specifically, each arc of the network is assumed to
be subject to breakdowns which result in a reduction in its capacity.
The problem is to find the greatest reduction in maximum flow pos-
sible if n breakdowns occur and to find where these breakdowns
must occur for this reduction to result. The methods developed in
this report solve this problem for a certain class of networks known
as planar networks.

The first method solves the problem exactly where it is as-
sumed that each arc is subject to only one breakdown and the
amount by which the capacity of an arc is reduced due to a break-
down is a deterministic quantity. The algorithm developed ‘c;ould,
however, easily be modified to allow for multiple breakdowns on one
arc.

The second method solves this problem approximately when

the amount by which the capacity of an arc is reduced is a random



variable with unknown distribution but with known mean and
variance. For this case, multiple breakdowns are allowed for the
individual arcs. The algorithm developed can also be used to solve
the problem more exactly when these random variables have normal

distributions.
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CHAPTER 1I

Basic Concepts

1. Max-Flow Min-Cut Theorem

The central idea in the solving of maximum flow network
problems is summarized in the max-flow min-cut theorem

Definition; Consider a network consisting of nodes which in-

clude a source and a sink, and capacitated arcs which join two nodes.
Let A and B be a partition of the nodes such that the source is
in A and the sinkisin B . Then the set of arcs which join a
nodein A toanodein B is called a cut set and is denoted
[A,B] . Furthermore, the value of this cut set, V[A,B] , is e-
qual to the sum of the capacities of its arcs.

A property of any cut set, [A,B] , is that any path from
source to sink must use at least one of its arcs. Thus, it is appar-
ent that the maximum flow cannot exceed the minimum value of all
cut sets. The max-flow min-cut theorem states that the maximum

(1)

flow actually equals the minimum cut.

2. The TgPolgiical Dual

The topological dual of a network, when defined, is another
netwnrk in which the arcs, instead of having capacities, have
lengths. Furthermore, there is a one-to-one correspondence be-
tween the proper cuts of the original network and the routes through

the dual, and the problem of finding the minimum cut may be re-

mReference 8.



duced to one of finding a shortest route.

Let the original maximum flow network be called the primal.
To the primal add an artificial arc extending from the source to the
sink and having a capacity of zero. The resulting network will be
referred to as the modified primal. The dual network is defined if
and only if the primal is source-sink pianar, a source-sink planar
network being cne where the modified primal can be drawn on a
shere in such a way that no two arcs intersect except at a node.

When defired the dual is constructed in the following manner:

1. Draw the modified primal on a sphere in such a way that no
two arcs intersect except at a node.

2. Place a node in each mesh of the modified primal. Let the
node in one of the two meshes bounded by the artificial arc be the
source and the node in the other of these two meshes be the sink.

3. For each arc except the artificial one construct an arc of
the dual that intersects it and joins the nodes in the meshes on either
side of it.

4. Assign each arc of the dual a length equal to the capacity
of the primal arc it intersects.

An example of a network and its dual is shown in Figure 1.
Letting a route through the dual be any path from its source to its
sink, it follows that there is a one-to-one correspondence between
the prope: cuts of the primal and the routes of the dual. (1) Specifi-

cally if A is any route through the dual then the arcs of the primal

u)Reference 8.
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which intersect A form a proper cut and conversely if B is a
proper cut of the primal, then the arcs of the dual which intersect

B form a route.



CHAPTER III

Deterministic Case

1. Problem Formulation

The problem solved in this chapter is the following:

A source-sink planar maximum flow network is given in which
each arc is subject to, at most, one breakdown: a breakdown re-
sulting in a reduction in the capacity of that arc by a known quantity.
It is desired to find the greatest reduction in maximum flow possible
from, at most, n breakdowns and where these breakdowns must
occur, to give this reduction.

Since the maximum flow of a network is equal to its minimum
cut which in turn is equal to the length of the shortest route through
its dual, it follows that solving this problem is equivalent to solving
the following problem for the dual:

A network is given in which the arcs are assigned lengths.
Each arc is subject to an improvement which results in a decrease
in its length by a known quantity. It is desired to find the smallest
value possible for the length of the shortest route, if no more than
n improvements occur and where these improvements must occur
in order to achieve this.

It is the latter problem that the algorithm of this chapter
solves. Throughout the rest of this chapter all nodes and arcs re-

fer to the dual network unless specified otherwise.



2. The Alggrithm

Let an i-arc path to node a be any path from the source to
node a along which atmost i improvements occur. Also, let
L i (to be determined later) be the length of the shortest i-arc

a,
path to node a . The algorithm assigns to eachnode a , n+1

labels, (D.t,k)a’ 0’ (D,t.k)a’ 1] v (D’t'k)a.n . The individ-
ual components of (D, t, k)‘. i will be denoted by Da,i , ta.i
and ka.i . Initially, it is known that all Da.i > La,i . The

Da ; are then decreased in such a way as to preserve this initial

property until all Da . = L

i i i' . At this point DS. n 18 the

length of the desired path where T is the sink. The components

t . and ka ; are tracers which are used to find the desired path

itself.

Let 1(a,b) be the length of arc (a,b) , d(a,b) the decrease
in this length due to an improvement, S the source, and S the
sink. Note that 1(a,b) =1(b,a) and d{a,b) =d(b,a) . The
algorithm for finding the length of the desired route is as follows:

1. For i=0,1,...,n set DS.i =0 and Da.i = o for

atS . Set m=0

2. Check each arc (a,b) and:

a. If Da.m>Db,m+l("b) set

Da.m = Db'm-t-l(a,b)
t =b

a,m

k =0

a,m



at 1(a,b) - d(a,Db)

1
b. If\- m >} and Da,m > Db.m
set
Da,m = Db,m-l + l(a,b) - d(a, b)
t =b
a,m
k = 1
a,m

3. Repeat 2 until no more changes can be made. Then if
m<n , increase m by 1 andgobackto 2 . If m=n,
terminate, as DS, n is the length of the desired route.

The desired route itself may be found by the following proce-
dure:

1. Set m= .'S=a1 . i1=n

=i -k

2. Let a =t ; and i
m+l m a

'1 ,i
m m m m

3. If am_H#S , increase m by 1 and gobackto 2

Otherwise terminate.

S=a R W B is the desired path. The improvements

m+l’

must occur on those arcs (aj+l’ aj) where kaj'ij =1 . The arcs
in the primal on which the breakdowns must occur are the arcs

which intersect!these arcs of the dual.

3. Justification of the Algorithm

The procedure for justifyjing the algorithm of the last section

will be to show firstthatall D .> L_. alwaysand D_.=L_.
a,i— "a,i a,i a,i

at termination. Then a relationship between the La i will be

established to help verify the process of tracing out the desired path.

Lemmal: D .>L . all a andall i
a,i - Ta,i

-G .



Proof: Assume that at one point D:'1 i_>_ La i all a and

all i . Suppose that some D_ . is changed to ﬁai . Then

there is a node b such that either:

1. B, ;=D

i+ l(a,b) or

2. D = D + l{a,bj - d(a, b) .

a,i b,i-1

In the first case any i-arc path tonode b of length Lb i plus

’

arc (a,b) at its true length of 1l(a,b) isan i-arc path of length

less than or equal to ﬁa ;- In the second case any (i - i})-arc

path to node b of length L, i-1 plus arc ({a,b) at its.improve-
ment length of 1(a,b) - d{a,b) is an i-arc path to node a of
length less than or equal to ﬁa L Thus the relationship

Da.i > La.i all a andall i still holds. Initially,

Dg ;=0=1Lg

follows from induction.

and D .=wo>L . for a#S . The lemma
a,i a,i

Lemma 2: After a finite nrumber of iterations, Da 0= La. 0

for all a and remains at that value for all subsequent iterations.

Proof: Let S.al, e, a be a shortest route from S

to a . After one examination of the arcs,

Dal' < l(S.al)

After 2 iterations,

DaZ' < l(S,a.l) + l(al,az)

After m +1 iterations,
mel
Da.,O < l(S,al) + z l(ai’a’iﬂ) + l(am,a) = La, 0

i=l

- 10 -
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Of course Da 0 will remain at La. o for all subsequent itera-
tions since the Da, ¢ arenon-increasing and Da. 02> La., 0 by
lemma . Thus the lemma holds for any particular node. Let

m(a) be the number of iterations required in order that Da 0° I‘a 0"

Then after max mf{a) ite:ations D 2 L for all a
a a,0 a. b
Lemma 3: Suppose S, IR i8 a shortest i-arc path
from S to a . If arc (a .a_) has an improvement in
m m-}l'""m

1. L =L . . + ifa a ) =-dfa ,a_ )
a__,i a_ ,,1-1 me=: I'"m
m me=a
Otherwise
2. L = L + l'a .a_ )
a_ .1 a ; m-1
m m-1
Proof: Suppose arc lam-],am) has an improvement in this
path. Then S.al. SRRE S is an (i-l)-arc path to a i of

length La i l(am_l.am) + d{am_l.am) and
m
. \ !
L, ik - Magpagt da 1 3m) OF
me-l m
L. i 2 L, it 1(a‘mal'am) - d(a'm-l'am)
m m-} :
Furthermcre, any (i-l)-arc path of length Lam-l'i°l to a_

and arc (a am) at its improvement length is an i-arc path

me-1’

to a of length L ., + la ,a
m a_.pit m-1' m

)-d(a and the

m-l’am)

a_ ) does not have an improve-

first equality holds. If arc (a :
m-l""m

ment, then S.al. o+ sail is an i-arc path to a_ .1 of length

m-l

. il -



La L l(am_l.am) and La i > La gt l(am-l’ -
m m m-1
Also, any i-arc pathto a of length L . and arc
m-1 a ’
m-l
(am_l.am) is an i-arc path of length La‘m-l’i + l(am-l'am) and
the second equality holds.
Lemma 4: Suppose S,al. ceeaa is the shortest i-arc path
from S to a . Let (a_,a_.,) be the last arc in this path to
m r’' r+l
have an improvement. Then, if i > 1
m-1
La T La el d(ar'arH) + z l(aj'aj+1)
m r
J=T
Proof:
L . -L .=1lla,a.,,) J=r+l,...,.m-1
aj+1.1 aj,l 3 i+
Lar+l’i - La i-1 " l(ar'arH) ) d(a'r’a'r-i-l)

from Lemma 3. Summing these equations, gives

me~l

L, i L, ,i=1 " dla ,a ) +§ 1(a'j'a'jﬂ)
m r et

Theorem 5: The algorithrn terminates after a finite number of

all a andall i

iterations with D . L .
a,i a,i

Proof: Suppose that after a finite number of iterations

Da.i=La,i all a and all iiM. Let S,al,...,a,m be an

(M+l)-arc path of length L ! and let (ar. ar+l) be the

a__, M+l
m
last arc in this path in which an improvement occurs. Then, after

one additional iteration,

Dar+l.M+l - I"a.r. M " cl(ar'ari-l) * l(a'r'ar-!»l)

-12 -



and after m - r additional iterations,

m-1
D, ms1SLla M- )t z Hajoa; ) = Ly Ml
m r ! m
J=T
and the theorem holds for any particular Da M+l Let m(a)

be the number of iterations required in order that D, M+l °

L Then after max m(a) iterations Da. M+l = La. M+l

a, M+l
all a . Since Da, 0= La,O after a finite nl!mber of iterations,
the theorem follows from induction.

Of course, any route from source to sink with n or fewer
improvements is an n-arc pathto S . Thus at termination

DS = Lg is the length of the desired route. It now remains
» n [ » n

to justify the procedure for tracing out the desired path itself.

Lemma 6: If ka i =1 , then
i')
L = L +1(a.,a,,,) -d(a,,a.,,)
aj.1J j+1’1_]+l j+l j' )+l
and if ka =0 then
")
L . =L . +1(a.,a. ,)
aj. ‘j aj+l' 1J+1 +1
Proof: Suppose k i =1
i
Then
I. . =D . +1(a.,a. ,) -d(a;,a, ,)
aj"j aj+l"j+l j' )+l j' )+l

held when the label La i was assigned. Furthermore,

i’

D . = O . at this time for if not any i. , =(i. - 1)-arc
a0 2 el ALEER

-13 -



path tothode of length L

2541 Y4l
its i.l(nprovomont length is an ij - arc path to node a § of length less

‘j+l plus arc (a_j.aj_'_l) at

than L . Also, if k = 0 then
od ! -
'3 %
L =D . +1(a.,a..,)
"j'ij ‘j+l' 1j+l j' o j+l
held when the label L a. i Was assigned. Furthermore
3'J
D = L held for if not any ij+l = ij -.arc path to '

Lk Y

node 'j+1 plus arc (a "j+l) at its true length of l(‘j"'jﬂ) is

an {,-arc path to node a. of length less than L .
-3 j a5 i

Lemma 7: The procedure for tracing the desired path is

finite. (i.e., there exists | r suchthat a(r) =S °¢)

Proof: L < L and i <i
"j+l’ij+l - ‘j’ij j+l = 7§

with strict inequality for at least one of these. Thus no pair ("r' ir)

can be repeated and the procedure must be finite.

Theorem 8: Let a,,....,a be the nodes found by the

m+l
tracing procedure. Then S=a_ .., ....8 = S with an improve-

ment occurring on arc (‘j"jﬂ) if and only if k‘ z]l is the

'Y

shortest n-arc path to S.

?rod’: Suppose S = L IRTERS :t; with an improvement on

i=--l is an lr-arcpathto a

j

arc ('a "j+l) if and only if k2 .

j.

oflength L . . Then:
‘r’ir

- 14 -



3rel’tral r' Ar-171r-1
or
2. L : = L +1(a_ ,,a ) -d(a_ ,,a_) if
a_ i o1 r-1'"r r-1'"r
ka i =l
r-1'"rel
In either case a o @ with an improvement on arc
| m+l r-l
(aj,a.j+1) if and only if kaj’ ij =1 1is an ir-l -arc path to a_ 1
of length La’r-l' ir-l . Since a 4 ° S 1is a path of zero length

and hence an im 41oarc pathto a_ ., of length La i
m+l’ ‘'m+l
it follows from induction that a_ Ly is an n-arc path to

3, of length Lal’ iy = I“S.n .
This completes the justification of the procedure for finding

the desired route itself. The arcs where improvements must occur

are those arcs (a,,a..,,) where k_ . =1 . Thearcs of the
j' i+l a.,i

i')
primal upon which breakdowns must occur in order to minimize

the maximum flow are those which intersect thesetarcs of the dual.

15 -
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CHAPTER IV

Stochastic Case

1. Problem Formulation

The arcs of the maximum fiow network in this chapter are
subject tc anywhere from 0 to n breakdowns. The decrease
in capacity of arc (a,b) dueto i breakdowns is a random variable
with unknown distribution but with known mean and variance. The
mean and variance of this quantity will be denoted as p{a,b,i)
and cz(a, b,i) respectively. Furthermore, these distributions
are independent for the different arcs. It is desired to find the
smallest possible value of F resulting from, at most, n break.
downs where F satisfies: | -

P {max flow > F} < B
where P stands for probability and B is a small number be-
tween zero and one.

This problem can also be formulated in terms of the dual net-
work. Specifically, each arc cof the dual is subject to anywhere from
0 to n improvements. The decrease in length of arc (a,b) due
to i improvements is a random variable with mean p(a,b, i) and
variance cz(a. b,i) - It is desired to find the smallest possible
value of F resulting from, at most, n total improvements on
n or less arcs where F satisfies:

P {min route > F} < B

It is the latter formmulation that is considered in this chapter.

- 16 -



Since examples can be constructed to show that different distribu-
tions with the same p(a,b,i) and o'z(a,b. i) can have ‘different

F and different locations for the improvements, the information
given is not sufficient to determine a sol:aiion. Accordingly, the
distribution considered will be the one whose smallest value of F

is maximum.

Suppose that if improvements occur on certain arcs, the length

of a particular route is a random variable L with mean p and

variance 62 - It follows from Tchebysheff's extended lemma(l)

Bil=p2el s —o—
or

Pi{Lzere) g o

€ +0

If it is required to minimize p + € under the condition that:

2
o
—— < B
€ +0°
it follows that
€ =0 B-l

and one obtains
P {L3p+¢r B--l }f'B

Thus the quantity u + o'\’-B-l - 1 playe the role of tlie length

(I)Reference 9, pp. 111-126.

-17 -



of the above mentioned route and will be referred to as its effective
length. The algorithm to be presented in this chapter finds those
arcs upon which the n improvements must occur in order that the
minimum effective length of all routes through the dual be minimized.

In order that this be a valid criteria the following assumptions
are made:

1. w(a,b,i) < 1(a,b) and is strictly increasing in i

2. u(a,b,i) - ofa,b, i) ;-1 >0 for i>1

3. p(a,b,i) > p(a,b,1) implies
P'(‘»b» i) - U(aob'i) B -1 > Fﬁ'so'{) * 0(;osnn xVBl -1

These assumptions assure that the solution to this problem involves
exactly n breakdowns, assure that the effective length of an arc
is always greater than zero and generate arguments in favor of the

efficiency of the algorithm.

2. The Aﬁorithm

Let an i-arc path to node a be any path from the source to
node a with i or fewer improvements occurring on its arcs.
Eacignode is assigned n +1 sets of labels, the set numbers being
designated as 0,1,...,n . Each label consists of four components
and is denoted (u, cz. t’k)i,i where a designates the node, i
the set number and j the rank within the set. The individual com-
ponents are denoted as wl,i ) (O’Z)j ) tj . , and kj . . The

a.i a.‘ a"

quantities p.‘; i and (az)i ; are related to the mean and vari-

’
-

ance of i-arc paths to node a and at termination p.-Js = and

- 18 -
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(cz)é o are the mean and variance of the length of the desired path

where J = max j inthis set. The components t-’a ; and k'li

are tracers which are used to find the path itself. Again, S and
S refer to the source and sink respectively.

The algorithm for finding the mean and variance of the length
of the desired route is as follows:

1. Set i=0
i
Hs

for a#S and 8 =i

|

2. Set My i =

20 2.1
i=log =0, o )i =

3. Consider each a and all arcs of the form (a,b)

For each j consider the quantity:

L = p‘l]) i< +1(a,b) - p(a, b, s)

+\/(°’2)%' iost crz(a.b. s)-\/é -1

and delete from the set i at node a alllabels j' which

satisfy:
' >4 . 41(a,b) - pla,b,s)
“a,i = Fb,i-s » b T HE S
jl jl l-
Ma,i * %a,i JB L2 &

with strict inequality for at least one of these. If there is no '
satisfying:

W' o<l +10a,b) - pia,b,s)

j' j' l-
Ha,i * %a,i dB P E b

introduce the label (p.,O'Z.t,k); . where

-19 -



e p{.i_. +1(a,b) - p(a,b,s)

(cz);'i = (o-z);,i_' + cz(a,b, 8)
t,,i= b
k™ .= 8

a,i

If any changes result in the labels after examining an arc, resrank

the labels in order of increasing first component. This results in a
change in the superscript j for some labels. In this set, j now
takes on the values 1,2,...,r where r is the number of labels
inset i atnode a

4. If =0 goto 5 . Otherwise, decrease s by 1
and go back to 3

5. Repeat 3 until no changes in the labels of set i at
node a result.

6. If i <n , increase i by 1 andgobackto 2 . If
i=n , terminate, as ,.%’ n and (tr?'%.n are the mean and vari-
ance of the length of the desired path where j equals the number
of members of set n at S

The path itself may be found by the following procedure:

1. Set m=1, al=3. and i, =n

2. Let (u, LY k)'S".Il be the label of highest rank among

set n at S

_1Jm
3. Set k -ka

m , 1

4. Increase m by 1 . Set i_ =i -k and

- 20 -



- jm-l - . [y
a =t i . I a =S ,goto 6 . Otherwise, find a
m-1’ ‘m-l
(1)

label in set i at node a which satisfies
m m

jm - jm-l
Ma i ~Ha o - l(am-l'a"m’ + "L(am-l’ am’ km-l)
m' m m-1l’ 'm-1
(o “a i o0 )a. 3% - (amol'am’ km-l)
m m m-!'"'m-l
5. Go backto 3
6. Terminate. S = a_ .-, E S with arc (aj. aj+1) having

kj improvements is the desired path. The arcs of the primal upon
which breakdowns must occur, are those which intersect this path.
Specifically, kj breakdowns must occur on the primal arc which

intersects arc (aj.a. ) in this path.

j+l

3. Justification of the Algorithm

The justification will consist in showing that the algorithm is
finite and that at termination the label of highest rank in set n at
S has as its first two components the mean and variance of the
length of the n-arc path to the sink of minimum effective length.
Furthermore, the steps of the tracing procedure can be carried out

and finds this path.

Lemmal: Let S =a,,a,,...,a with k. breakdowns
0’71 m j

occurring on arc (aj-l’aj) be an i-arc path to a_ such that
all of its arcs are distinct. Let the mean and variance of the length

of arc (aj_l.aj) be p.j and '\'trjz'" respectively. Then the total

A% ) ~e, t
" 7N _"-on‘..

mNote that pu(a,b,0) = O'Z(a.b. 0) =0
- 2] -




length of this path is a random variable whose mean is equal to

m m ,
p> p.j and whose variance is equal to Z ¢
j=l j=l

Proof: The amounts by which the lengths of the different

arcs can/be reduced are independent. Hence the lengths of the

arcs themselves are independent and their variances may be added
to give the variance of the total length of the path. Of course, the
means may be added regardless of whether or not the distributions

are independent.

Corollary 2: Let S = ag,---sa with kj breakdowns

occurring on arc (aj-l’ aj) be a non=cyclic i-arc path to node
a_ , and let the length of arc (a, ,,a.) have mean pu. and
m =V J

variance crjz . Then the length of this path has mean

m m ,
Z p, and variance Z o,
)=l j=1

Proof: Since the path is non-cyclic, all its arcs are distinct

and the corollary follows from iemma 1.

Definition: The pair (pu, 0'2) is said to dominate the pair

(7,5%) if and only if:
i) B2k

i) pto \g-1<_;+? \/%-1

with strict inequality for at least one of these. If path 1 is an
i-arc path to node a whose length has mean My and variance
vi , and path 2 is an i-arc path to node a whose length has

mean j, and variance crg then path 1 is said to dominate path

- 22 -



2 if and orly if the pair ('.11,0'?) dominates (p.z, crg) . An i-arc
path to ncde a that is not dominated by any other i-arc path to
node a is taid to be an undominated i-arc path. Furthermore,
a label (p.u’z,t,k)'; |, dominates the label (, o2, t,k)z’i if and
b ey ) T e )

a,i’ } dominates (p. ., (

only if the pair (p i a i -

Note that the dominance property is transitive, that a label
can be introduced into a set oniy if no other label in that set domin-
ates it, anc finally, when a label is being coasidered for introduction
into a set, the labels that are dropped from that set are precisely

those which are dominated by the one being considered.

Lemma 3: A label cannot dominate another label in the set.

Proof: Suppose the theorem holds at one stage of the al-
gorithm and that node a and arc (a,b) with s improvements

J

2
are being considered with respect to the label {u,0°,t, k)b i

Let:

i B p{)’i_s + l{a,b) - p(a,b, s)

?Z = (02){)' gt O'Z(a,b. s)
All labels among set i at node a whose first two components
are dominated by (H.?Z) are dropped from this set and the con-
dition still holds. Then the label (p.cz.t,k)z. = (LT5b,8) s
introduced into this set if and only if it is not dominated by any other
label in this set and the property is still preserved. The only other
way a change in labels can result is through the introduction of
(0,0,-,-) or (w,w,-,-} into an empty set. Initially, the con-

ditions of the lemma hold with all sets empty and the lemma follows
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from induction.

Leinma 4: A label can only be dropped from a set if an-

other label which dominates it is introduced into that set.

Proof: Suppose a label ({p, vz,t,k)';'i is to be dropped from
set i atnode a . Then there is a quadruple (u, ?2,?,]2) which
will be introduced as a label irto this set provided no other label
would dominate it and which has the property that it dominates
(TR crz, t, k)‘;.i . Furthermore, ro other izbel in this set can domin-
ate:itr for if it dig it would also dominate ({j, 0'2’, t, k)i.i . Hence
(1, crz, t.k)-J:’i = (ﬂ.?z,?.m is introduced into set i atnode a

proving the theorem.

Corollary 5: If a iabel is dropped from a particular set,

there will always be a label in that set which dominates it.

Proof: This follows immediately from lemma 4 and the

transitivity of the dominance property.

Lemma 6: Letpath 1, S=a,....a =a with k, im-
m j

provements on arc (aj-l” aj) andpath 2 , S=a,,...,a_ =2

with Rj improvements on arc (Ej_l,aj) by non-cyclic i-arc
paths to node a . Let path 1' and path 2' be (i+r)-arc paths to
node b formed by adding arc f{a,b) with r improvements to
path 1 and path 2 respectively. If path ! dominates path 2 then
path 1' dominates path 2'

Proof: Since paths 1 and 2 are non-cyclic, it follows that

- 24 -



the arcs of each path 1, 2, ' |, and 2' are distinct. Letting the
pairs (u(a),oX(a)) . (F(a).5%(a)) , (uib), o%(b)) and {f(b), 75(b))
be the means and variances of the lengths of paths 1, 2, 1' and
2' , it follows from lemma 1 that:

ui(b) = p(a) +1{a,b) - puia, b, r)

u(b) = u(a) + i{a,b' - pra, b, r)

cz(b) = O'Z(a) + O'Z(a,b. r)
inb) = Fz(a) + cz(a.b, r)
Therefore:

n(@) < piaj

p(a! + lia.b) - p(a,b,r) < ula) +1{a,b} - p(a,b, r)

i) < b

with equality only if pia) = pla) and the first condition is satisfied.

For the second condition one has:

p(a) + ofa) \,B -1 = ufa) + o a:\l

p(a) < u(a

Case l:

o(a) > o(a)

O'Z(a) - ?&.’a}

o (a\ - 0'2(3

[0243} + O'Z‘ia.b.r',] - [Ez(a\ + ozla.b. r)]

e%(b) - 5%b)

ofla) + ola) < o(b) + c'b)

ola) - oia) > o(b) - o.b)

u(a) + [ ofta) - dial] \, = u(a)

wa) +[o(b) - o(b)] B - < nla)

u(b} + o(b) Bf -1 < Rlb) + S(b) \’é -1

. 25 .



p(a) + ofa) -é - 1< ',I("a) + o{a) z; -1

Define ¢ such that

p(a) + c\/l -1 = g(a) +'E(a';\/1! -1
7z . \F -~ N
p(b) + \Jjo~ + 0o ta.t,r) B - 1 < u(b) + o(bj B - ]

Also o{(al< ¢ . Thus

o(b) < \/0'2 + cz(a,b,r}

uib} + c(b}\/é - 1< Wb + 5(b) 5-1 ,

Lemma 7: For each label (p.,O‘z.t,k)i i the quantities
p.Ja i and (0'2)'; i are either infinite or are equal to the mean
v

and variance of an i-arc path to node a
Proof: Suppose at one stage of the algorithm that for each

2 j ) 2.) P
label (u, 0 't’k)a.i where My 4 and (o )a.i are not infinite,

there is an i-arc path S = ag,---,a  =a with ‘(j improve-
ments on arc (a‘j-i‘ aj) whose arcs are distinct and whose length

has mean p‘;i and variance (az)ii and such that set

m
[i -Z k.] atnode a contains a label whose first two compon:
j=n+l

ents equals or dominates the mean and variance of the length of the

path S=za,...,a with k. breakdowns onarc (a. ,,a.)
0 n ) =173

2

Suppose the label (p,¢“,t, k){) is introduced through the ex-

, 141

amination of arc {a,b) with r improvements. Then there is a

label (u,0%,t,k)) . such that.

-

“Jb,i+r = “Ja,i + l{a,b) - ma, b, r)
Nl _ (g2 2,
‘o )b,i_+r = (o 2 i ‘0 ‘,g,b.r)
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Let S = ag,---,a_=a with kj improvements on arc

(aj-l’ aj) be a path which satisfies the above conditions for

2 j . _ _ .
() o ’t'k)a.i . Consider the path S = ag, - a1 " b with kj

=r . If each of its arcs

improvements on arc (aj-l’a_;) : km+l

are distinct, it satisfies the above conditions for (u, 0'2. t, k){) i+r

Suppose its arcs are not all distinct. Then thereisan n < m

such that a_ = a and a = a . The mean and variance
n m n+l m+l
of the length of above path S = ag, - - A, with kj improve-
m+l
ments on arc (a, ,.,a) for j<n and Z k., improvements
31y - j=n+l
. : 3 2.)
on arc (an'an+l) dominates the pair “‘b.i+r’(c )b,i+r) . Also
the path S = ag,---,a =a with kj improvements on arc
(aj-l’aj) dominates the path S = ag: A with kj improve-
m
ments on arc (a_ ,,a.) . Therefore, if T k. =0 thereisa
-1 J=n+l

label in set i at node a which dominates (|.1.0'2.t.la<):l ; con-

tradicting lemma 3 . On the other hand, suppose

m m

Z k #0 . Consider any labelinset [i-Z Kk,] at node a
j=n+l J j:n+l
whose first two components dominate the mean and variance of the
lengthof S = agr---.a =a with kj improvements on arc

m+]

(a; ;,,a.) . This label and azc (a,b) with £ k., > r improve-

=173 j=n+l

ments will be examined prior to the introduction of (u, cz, t, k)'L i+t
as a label. After this examination there must be a label among set
(i+r) at node a 417 b which equals or dominates

(p.,az.t.k)':, ivr But this prevents its introduction as a label.
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Thus the arcs of S =a,,...,2_ ., =b are distinct. The intro-

0 m+l
duction of (0,0, ~,-) intc any set at the source or {og, o, =, =)
intc any set preserves the above properties. Furthermore, the
dropping of a label preserves these properties since it is immedia-
tely followed by the introduction of a label into its set which domin-
ates it. Initially these properties hold with all sets of labels being

empty. The lemma follows from induction.

Lemma 8: The labeling algorithm is finite.

Proof: Since the first two components of a label are either in-

finite or are equal to the mean and variance of a path whose arcs
are distinct, it follows '.d¢t-this pair must be selected from a finite
set. In addition the choices for the t'; i and k'; ; are fin'ie.

’ 4

Thus the labels themselves are selected from a finite set. Further-
more, no label may be introduced into the same set more ti:an once
for if it is once dropped there is another label in the set which

dominates it and prevents its re-entry. Thus the algorithm is

finite.

Lemma 9: At termination rno labels are infinite at any node

to which a path exists.

Proof: Consider set i atnode a . Let 5 = ag,---.a  ®
a be any pathto a . It follows that on or before the (m+l)—"?——-'
examination of the nodes for set 1 in step 5 a finite label will be

introduced into the set i at node a
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Corollary 10: At termination p.‘;i and (crz)';i corres-

pond to the mean and variance of i-arc paths to node a for all i
and all j provid-1a pathto a exists.

Proof: This follows immediate'y from lemma 9.

Lemma 1l: Let S = ag,---,a3 =a with k. improve-
- m J
ments on arc !a}_!.aj) be an undominated i-arc path to node a
Then this path contains no cycles.
Proof: Suppose this path does contain a cycle. Let
(Ej-l'zj) ., j=1,...,m be the distinct arcs of this path. Further-

more, let arc (Ej-l';j) be used Cj times in this path and let

its length have mean pu. and variance c; . Then the total length

J
== - m w2 2
of this pah has mean Z C.u. and variance £ C.¢., C, >
j=1 ) j=1 3 J J =
all j . Delete al! cycles from this rath. The resulting path is an
m
i-arc path to node a whose length has mean X Cj p.j and vari-
i j=1

m
ance T C%¢? ; CJf.l all j and Cj:O for some j . Thus

j=t 7
the path S = ag,---,a_=a is rot urdominated.
Lemma 12: Let S = ag,-...,a_=a with k. improve-
m J

ments on arc "aj--l'aj) be an undominated i-a:r : path to node a
Then S = agr - o2y with kj improvements on arc (aj_l,aj)
is an undominated (i-k_)-arc path to node a
m m-1
Proof: Suppose the above path is not undominated. Let
S = bo. 2 'br'r'x =a_ | with Ej improvements on arc (b_]-l' bJ)
be an undominated (i-km}-arc path to node a that dominates
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S = ag,---,a with kj Imprcvements on Arc (aj_l,a.)

J

§ AE & ,bm and S - IS S cortain no cycles

1
hadP

Ther S = b0

and it foliows from jemma € trai S = bC' R Y with k.
m’“m j

improvemernts on arc (bj }.’bi) and km imprcvements on arc

(b=,a_) is an 1-arc path rorode a which domin:tes
m’ " m m

-

S = CTYRRRRE with k improvements. on arc  {(a. ,,a.} contra=-
' m ] : J=1"";

dicting the hywoth=sis.

Lemma 13: At termination the set of pairs (;.c,‘_i1 . (0'2)-; 1;)
L s

is the set of means and variances cf all undominated i-arc paths
to node a provided a pathto a exists.

Proci: Suppose that after the aigoritom terminates for the

. . ] 2.j
sets r the lemma hclds for all sete of pairs "p.J -l L T
Ta, i a,i

i<r . Let S-= ETRREEE S witk. k. 1improvements on arc

A3

’aj 1’ a}.) be an undomirateld (r+l}-arc rath toncde a andg let

!ap 2 ) be the last ar¢ ir *his pa*th upcer which ‘mprovemenrnts

-

occur. From repeated zoplication of emmma L2 it fciiows that
P o
S = Bgreee atp._‘l with k. imprcvements on arc (a
undomirsz:ed (r+1-kp)-arc path to ncde ap .« Let the mear and
2,
12

variance of the lz2ngrhs of ‘hese twc paths e *he pairs (pm. L

; il a%) i8 an

2 \ .
and (pp X c_p l} respectively. Then there exists a pair
; 2.3 . 2 : '

J ‘i | cp-L) . {i.e., there is a

label in seat :t~+l-kp at node a_ . whess fiT et (WO components

¢ . +) Notz that the patk. S = 2y e ,a,p wirh

and o
p-.

ars “p-l

kJ improvements on 3r< & ,a._‘) i a7 undominated (r4l)-arc
-‘-J' 157



path to node ap . Denote the mean and variance of the length of
this path by p.p and crf) There can be no pair

j 2,j . 2 , :
(p.ap, r4l’ (o )a ' r+l) that dominates (pp. trp) since such a pair

must either be infinite or be equal to the mean and variarce of an
(r+l)-arc path to node a_ - Thus, after examining set (r+l-kp)

at node a and arc {a ,a ) with k improvements there
p-1 , p-1""p P
J

must be a label (u, 0% t,k)) 4 Suchthat ard
p.

ap, r+l! " M';::

(02)'; r+l ° 0; - Furthermore, this label can never be dropped.
p'

Repeated application of this argument yields the conclusicn that

eventually a label (u, U-.Z, t; k)'z will be introduced where

T+l
p.J = and (0‘2)3 = crz ard that 1t will never be dropped.
a,r+l ~ Mm a,r+l m ’ ) P

Furthermore, any label in set r+i at node a whose first two
components correspond to the mean and variance of a dominated
(r+l)-arc path to node a will be dropped by the introduction of a
label whose first two components correspond to the mean ard vari-
ance of the length of a path that dominates the above mentioned one.
Thus, when the algorithm terminates for the sets r+1 the lemma

holds for all sets of pairs ,’_p.'; (or‘z):_'i i) » 1 < r41 . Let

1

S = bo, ¢ va ’br'?x =a be anundominatad O-arc path to node a

An argument similar to that above shows that after, at most, m+!

checks of the nodes there is a iabel (p, 02. t, k); 0 such that

P'Ja 0 and (02)'; o are the mean and variance of the length of

this path, and finally, when the algorithm terminates for the sets

0 the lemma holds for all sets of pairs (p.Ja q.(az}i 0) The
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lemma itself follows from indaction.

Theorem 14: When the algorithm terminates, the lavel of

highest rank among set n at S has as its {irst two compornents
the mean and variance cf the n-arc path of minimam efiectivs
lengthto S

Proof: The n-arc path of minimum eifect:ve 'ength is undom-
inated and therefore there must exist a label (p,a"z;, t, k)-js 5 at

,

termination such that p:is' & and (0'2'3-55’ 5 correspond to the
mean and variance of the length of this path. Furthermore, there

-

can bc no other label (u,c°,¢t. k)Jg n of higher rank, for if so

one has:
3
“%, n < ¥ n

j j AR S Y [
¥S,n* 78, n e TR Y

contradicting iemms 3.

tﬁ

Of course the n-ar: path of minrimum effeztive lengtﬁ to
T is the route cf smaliest efiective leagth possible from source
to sink due to at most n breakdcwns. Thus the algo.rith-m dces
find the mean and variance of the desired path. It ncw must be
shown that the tracing procedurce actualiy finds this path ard the

arcs upon which the n improvements must cccur.

Lemma 15;: Let (u, o, t, k}':1 ;0 2 #S Le alabel at termina-

1. Then there is ancther label {, 02, t,k):z> T at termination

such t*.at:
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T=i-1
a,l
| I R ) ]
Wa,i = Fp, T * 1(a,D) - pla, bk )
2,) _ .27 2 i
(o }a.i = (o )b.'f +0 (a'b’ka,i)

Proof: Consider the labei from which (u, cz,t,k'v’

— ‘a.i
v:as obtained. This label must satisfy the above conditions, ‘i.e.

must be g.p,trz,t.k)’ = . Furthermore, this label cannot be

b,1
K
dropped. for if it is another label ipu, 02. t.k)':) T is introduced
which domirates it. Exami.ing this label and arc (a,b) with
k'; i improvements produces a label which dominates and hence

2 )
(
drops (p.o . t, k)a. i

Lemma 16: The tracing procedure is finite.

Proof: The sequence of labeis found is strictly decreasing

lexicographically in (p.‘; . iy and hence none can be repeated

Thus the process is finite.

-

Lemma 17: Let the sequence of labels found by the tracing

procedure be:

2 W) _
(p'lo. ,t,k"ar.i ’ r= ln'"',m
r'r
Then: -
jl - J_J ' R N A
HE.n “Ma i 'zll'dr'anl} map.a, vk
1'71 )
. 7 m-l
I 2.i )
(g = (7)1} 2 c{a_,a k )
S.n a). i) rZ:l r’ “r+l
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where k = KT .
r a ,1
r r

Proof: It follows from the rules of the tracing procedure

that:
(i) pir i C “-;rﬂ i =iaa ) - waga pkdr=1...,m-l
r'‘r r+l’ ‘r+li
Im = dm _
Mg,i "My i 7 ¢
m m’ 'm
.. 2. 2,). .2, \ _
(ii) (o )al;,i‘_ - (o );I‘i'ti ~ 0 ‘ar’arﬂ.'kr‘ y T = lyree oy vhisl
2 Jm - Z\Jm =
(07)ghy =long™y =0
m m' ' m

Summing the equations (i) give the first relaticnship and summing

the equations (ii) gives the second.

Theorem 18: Let the sequence cf labels fournd by the tracing

procedure be as in lemma 17. Then S = PR S witk

kr = kJar ; improvements on arc (a.r,:e.r ) is an n-arc path
r''r

+1

from source to sink whose length has mean p.-Jsl = and variarcce

.

Proof: The quantities p-'Jsln and (cz)-‘]sln equal the sums

of the means and variances respectively of the arcs in this path.

All the arcs in this path are distinct, for if not there would te a
cycle, and deleting all cycles would yield an n-arc pathto S such
that its length has mean strictly less than ,'.;iisl’ n and variance not
exceeding (oz)jgl.n contradcicting theorem 14. Thus the theorem
follows from lemma 1.

This completes the justification of the prccedure for finding
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the desired route itself. The primal arcs upon which breakdowns
must occur are those which intersect this route. In particular kj
breakdowns must occur upon that arc of the primal which intersects

)

arc (aj, aj+l

4. Normal Case

Suppose it is known that the decrease in the capacities of the
arcs due to breakdowns are independently and normally (or rather
approximately normally) distributed with known mean and variance.
It follows that for any breakdown pattern all routes through the dual
are normally distributed.

Let the length of a particular path be a random variable L
whose distribution is normal with mean p and variance ¢

Then:

p{LsM > ou-p)-

where @(I-B) satisfies

-~

ba1-8

P{Y_<_ o1 -B;

where Y is standard normal. Thus:
P{L>_ pw@(l-B)l: B
L J

Hence pu + & &(1 - B) pilays the role of the effective length of this
path. Suppose it is desired to find the n-arc path to the sink of
minimum effective length. Then the algorithm just pres:znted in
this chapter may be used to solve this problem by replacing

1.1 by &(1-B8)

- 35.



5. Validity of the Bound

Under the breakdown pattern found by the algorithm the

following relationship exists:

P{V[A,B] > F} <B
where [A,B] is the cut set which intersects the n-arc path of
minimum effective length through the dual and ¥ is the effective
length of this path. However, the stochastic nature of this network
indicates that [A,B] need not be the minimum cut with probabil-
ity one and thus one is led to believe that there might exist an
F'* < F such that:

P{max flow > f} <B
In this section, a stochastic pProgram is formulated which applies
Tchebycheff's extended lemma to the entire network. It is then
shown, surprisingly enough, that suchan £ does not exist for
this program.

This linear programming formulation of the network is:

Find 'xij > 0 , max F such that:
x.. < b..
ij — 1ij
(1) Z‘x]s - Eij +F =0
J. j
zx..-zx..=0.i£8,g
J1 1)
J j

The dual to this program is:
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Find uij 2 0o, vi , min Z such that:

u..-vi+v >0

:,,‘ (2) VS - VS > ]

Zb. d.. =2
i) i

in'g
where bij is a random variabie. Of course, by the duaiity
theorem of iinear programming, min Z =max F for any fixed

(3 )

values of the bij Let “i) and oij be the mean and

variance of the amourt by which the capcity of arc (1,)) isre-
duced by the given breakdown pa‘tern and let Ci_) be its originai
capacity. Then:

Elby;) = Cyj - my;

var/b,.) = 0'.2.
1) 1)

Applying Tchebycheff's extended lemma, the stochastic pro -
2
gram (2) can be reduced to the nonlinear program (3\.( )
Find u,. > O.Vi. min Z such that:

Uy tv,o- v, <0, (1,30 £(S.3) .

"o (3) “vg+tvg+1<0
‘.‘:
k | 2 _
2( Cij - p'ij)uij +\/B - IJ %% ° Z
i, 1,

(I)Reference 4, pp. 128-134.
(2)

Reference 11, pp. 2-6.
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Theorem 1: In(3) min Z < F

Proof: Let

1 if ieA, jeB
"
J 0 otherwise
v.=[
L

1 if ieA
! C if ieB
This satisfies the constraints of (3) and gives Z = F
It now remains to determine whether or not min Z =F . If

min Z = F , then the feasible solution to (3) given in the proof

This happens if and only

)
such that: )

of theorem 1 is also an optimal solution.

>0 ,F>0

if there exists xi.
(4) G(Q, ¢) = min G{u,v) =

u>0 xij(-uij+vi-vj)+ F(-vs+v§+1)

(i, j) # (5.5}
where u = [uij] , V= (vi) and ((,¥) is the .easible solution
to {3) given in the proof of theorem 1

This is satisfied if and only if:

(5) [z?ga%“i)(“i'ﬁi’*zw("i‘oi)]io
1

L) i i
for all u > 0 at (u,v) = (4, 9) This happens if and only if:
ac‘i?"’) v = {i0) = O for =0
(6) 80(;;’ vi (u,v) = 16,9) = for a, > 0
aG(f"iV) (v =(6,0 =0 2l i

(UReference 4, pp. 471-472.
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Performing the differentiation indicated in (6) one obtains:

x.., F >0
ij =~

'1 » iCA.JGB

o =

Xy = (Cyympy

l .
-1 otherwise
VB

i) i)
*sj - .x.)S'F=0
j )
X. X. £S , S
ij = Jl
h] J

XS.J xJ-s+F-0

J J

It will be shown in the proof of the following lemma that the
relationships (7) can be satisfied if and only if a certain network
which is related to the primal network has [A,B] as a minimum
cut. Later on it will be shown that [A,B] is a minimum cut of

this network and therefore (7) can be satisfied and min Z = F

Lemma 2: Consider the network formed by taking the primal

network and changing the capacity of arc (i,)) to
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] . (Note that "ij = Gizj =0 if no break-

icA
jeB

downs occur on arc (i,j) ). Then min Z =F in (3) if and only

if [A,B] is a minimum cut of this network.

Proof: If min Z =F in (3) then the xij , F¥ which satis-
fy (7) also satisfy the constraints of the network and produce a
flowof F =V[A,B] . Thus [A,B] is a minimum cut. On the
other hand, if [A,B] is a minimum cut, then, letting X be
the flow along arc (i,j) the x.,. of any maximal flow pattern

1)
and F satisfy (7) . :

Corollary 3: If min Z # F¥ in (3) then the network in

theorem 2 has a cut [C,D] suchthat V[C,D] < F .

Proof: This follows immediately from lemma 2.

Definition: Let the effective capacity of a set of arcs, A

be u+ G'VLF-I where pu and 02 are the.mean and variance of
the sum of the capacities of the arcs in A respectively.

Note that all properties of effective lengths of arcs in the
dual hold for the effective capacities of the corresponding arcs in
the primal. Hence the analogous versions of the theorems in
Chapter 4, sectior 3, on effective length will be assumed to hold

for effective capacity.

Lemma 4: The number of breakdowns occuring on cut

[A,B] is n
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Proof: Supposeonly n-k , k >0 , breakdowns occur on
cut [A,B] . Increase the number of breakdowns on any arc of
[A,B] by k . This resuits in a decrease in the effective capaci-
ty of [A,B] and hence in the effective length of the corresponding
route through the dual network, contradicting theorems 14 and !8

of Chapter 4 , section 3

Lemma 5;: If min Z < F in (3) then under the breakdown

pattern found by the algorithm there is a cut [C,D] such that
the effective capacity of the arcs of {[C,D] - [A,B]N [C,D]} is
strictly less than the effective capacity of the arcs of

{{a.B] - [A.B]N [c,D]}

Proof: From corollary 3 there exists a cut [C,D] such

that: 2
"1, 1,1
Cl-“l+‘0'—z— B-1<C2‘p2+02 B-l

where Cl is the sum of the zero-breakdown capacities of the
arcsin [C,D], n, and 012 are the mean and variance of the
reduction in this sum due to the breakdown pattern and C2 '

By o and ag are these same quantities for [A,B] . Let C ,
M, and ot be these quantities for [A,RIN[C.D] . From
lemma 4, u = My and az H c‘:' . Thus the effective capacity of

{[c.D] -[A.B]N [Cc.D]} is C, - C and that of

{[A.B] - [A.B]N [C.D]} is
[(Cy-C - thy=py) +\fo 5 - o2\[5 - 1]

and one has:
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, , 2 211
2iCy - Ch - "*“2'“1”"-‘/“2 '“1.\/5‘1

proving the theorem.

Lemma 6: The mean and varian-e cf the sum of the cap=ci-
ties of the arcs of {{C,LC] - [A,B]/){C.Dj} dominates the mean
and variance of the sum of the capacities of the arcs of
{(a,B] - [A,B]N [C, D]}

Proof: Usingthe terminolozy of theorem 5 one has:

: 2 21h
{C;-C) < 'ZCjZ C)=u, =y +V02 ° ]/B 1

and since (p.z - “l) - va - U;l: .\/3} -1 > 0 it follows that

(Cl - C) < (CZ - C) rproving the theorem.

Theorem 7: In the convex program (3) min Z = F

Proof: Assume min Z < F . Then there isa cut [C,D]

such that the mean and variance of the sam of the capacities of
{lc,p] -[A,B]N [C.D]} dominates these same two quantities
for {[A,B] - [A,B]N[C,D]} . But this means that the mean and
variance of V[C,D] dominates that of V[A,B] , the proof cf
thie being identical to that of lemma 6, chapter 4, section 3. This
contradicts the fa~t that the aigorithm finds the shortest n-arc
path from source to sink.

Thus the soiutiorn to th2 stochastic program does r.ot improve
the tound found by the algerithm. This 1s a strong argument in
favcr of the validity of evaiczatirg a breakdowr. pattern solely on the

minimum effective caparity of ail cut sets.
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6. Practicality of the Algorithm

Since this algorithm is in many ways similar to the minimum
route algorithm(l) which is highly efficient, it would seem that this
algorithm would be practical, provided the number of labels in each
set remained small. While examples have not been solved co
establish whether or not the number of labels in each set is likely
to remain small there are indications in favor of this happening.

The first of these indications is the assumption that:

pla,b,i) > ula,b,q)
implies

u(a,b,i) - o(a, b, i) B}- 1> pu{a,b,i) -0(a,b,7) \/é -1.
Thus, the difference between the zero-breakdown length of a path
and its effective length tends to increase as the mean decrease in
length due to breakdowns increases.

The second of these indications is even more convincing. Let
A and B be two paths tonode a suchthat A has smaller
mean length than B but does not dominate it. Then if arcs with
breakdowns are added to the two paths, the new path fcrmed from
A tends to dominate that formed from B . This is summarized

in theorem 1.

Theorem 1: Consider the following quantities:

By K TR

;Z Pz"'i‘-

(I)Reference 7, pp-130-134.
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Ly =wy + [oy [V
1
Ly =iy * | | Vg -1

] SRyttt 0'l+(rv§-l
241
2 p2+p1-‘\/6 +0 E-l

. 2. 2 . |
Thenif o) > o, , By - My = Wy - u, and El-l':2<Ll--L2

.
1

o
1

with equality if and only if o =0
Proof:

My - M, = Hy - p, follows trivially

(E IS)- ‘L,-L, _
[\/c +cr '\/«§+o l| +|02| ]\/-g—-_l
|° |>| z|

2 2 2

crl+<r -al=02+0' -0
1’2 -"Z 2

cr+c +|0'1|> crz+c + 02

2 2 .VZ 2 : 2
'\/0'1-:1»0 -lcl|< o, +0" - |o, if o" #£0

0'1+tr -\}624-0'2 -|0'1| + oy < 0

Note that eduality holds in the above if ¢ = 0
The significance in this is that it tends to keep the number of

labels in a set from increasing at a rapid rate as one gets further

from the source.
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CHAPTER V

Otnhe- Approaches

Two valid criticisms of the aigorithms presented are that it
would be more desirable t~ have an algorithm that worked for non-
planar networks as weli 2s planar networks and which worked direct-
ly with the primai network. These probiems have been investigated
and the purpose of this section is io discuss some of the difficulties
encountered.

A labeling algorithm which works directly with the primal
was developed by the author to fiind the arc which, when removed
from the network, wouid reduce the maximum flow the most. ()
Among other things, this algcrithm required a list of all the arcs.

If this were to be extended to the case where n arcs are to be re-
moved (or their capacities reduced), a list of all n-tuples of arcs
would be required. Such a list would Le toc long to be practical.

An undesiratle feature cf this problem is that the solutior. for
(n - 1) breakdowns does not supply useful information for the solu-
tion for n breakdowns. In fact, examples have been constructed
where reducing the capacities of a particular set of n arcs reduces
the maximum flow to zerc while redacing the capacities of any (n-1)
arcs in this set causes no reduction in the maximum flow. While
this produces no d'{ficulties when working with routes through the

dual, it appears to be u.. .nsurmoauntable barrier when working with

cuts of the primal.

7) - -

Reference 15.
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Assuming this problem carrot be solved directiy using the
primal network, one may be tempted to try to extend the notion of
a dual network to non-planar networks. A natural way to do this 1s
to draw the network on a sphere and place an artificial node wherev-
er two arcs that are nct joinecd oy a node intersect. This essentially
replaces each arc by one or rmore sub-arcs in such a way as to
create a new network which is planar. Fach sub-arc is assigned a
capacity equal to that of the original arc it is a part of. A :ut set
[A,B] of the originai non-planar network will be represented in
the planar network if arnd cnly if there is a cut set consisting of ex-
actly one sub-arc of each arc in [A,B] . However, some cut
sets of the non-planar network may not be represented in the new
planar one. An example of this is the network of figure 2. The
actual nodes of the network are 1, 2, 3, 4, and 5 and the
artificial ones are a, b, ¢ . d, and e . Consider the cut [A, B]
where A ={1,2, 4} ard B ={3,5}) . Suppose [A,B] is
represented by a cut [A',B'] in the modified network. It follows
that 1, 2, 4€eA' and 3, 5 € B' . Since nc sub-arc of (1, 4)
can be in [A',B'] it follows that ¢ . d € A' and since no sub-
arc of (3,5) isin [A',B’'] it foliowsthat d. e € B' . But
this is impossibie since A'f} B' =@ and therefore [A,B] is not

represented.
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FIG.2 A NON-PLANAR NETWORK WITH CUT SETS
THAT ARE NOT REPRESENTED IN THE MODIFIED

NETWORK. NUMBERS REPRESENT THE ACTUAL
NODES AND LETTERS THE ARTIFICIAL NODES.

- 47 -



Appendix I: Example for Deterministic Case
An example was solved using the deterministic algorithm of
Chapter III. The network itself is shown in figure 3 and the re-

sults of the calculations in table 1.
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I
l
l

== ARC OF DUAL WITH LENGTH a AND
REDUCTION OF LENGTH b IF BREAK-
DOWN OCCURS

ARC OF PRIMAL
z:s NODE c¢ OF DUAL

FIG. 3 NETWORK FOR EXAMPLE 1
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Table 1: Results of Algorithm for Example 1

I. For (D,t.k)a 0

Initial . , Iteration 1 Iteration 2
a (D,t,kia'o - (D, t, k), a (D.t. k) g
S (0,-,-) S (0, -, -) S (0,-,-)
1 (o =, =) 1 (1,s,0) 1 (1,8, 0)
2 (0, =, =) 2 (1,S,0) 2 (1,8,0)
3 (0, =, =) 3 (2,2,0) 3 (2,2,0)
4 (0, =, =) 4 (4,1,0) 4 (4,1, 0)
5 (0, =, =) 5 (5, 2,0) 5 (5,2,0)
6 (0, -, =) (4, 3,0) 6 (4, 3,0)
S (c0, -, =) S (6,4,0) 3 (6, 4, 0)

II. For (D,t.k)

Initial Iteration 1 Iteration 2
a (D, t,k), a  (D,t,k), a (D, t, k),
S (0,-,-) S (0,-,-) S (0,-,-)
1 (o, -, =) 1 (0,s, 1) 1 (0,8, 1)
2 (w0, =, =) 2 (0,s, 1) 2 (0,s,1)
3 (0, =, =) 3 (1,s,1) 3 (1,8, 1)
4 () =, =) 4 (2,1,1) 4 (2,1,1)
5 (0, -, =) 5 (2,2,1) 5 (2,2,1)
6 (0) -, =) (2,3,1) (2,3,1)
S (0, -, =) S (4,4,0) 3 (4,4, 0)
Pathis S, 1, 4, 5 with breakdown on (1,4) .
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Agpendix II: Example for Stochastic Case

Another exampie was solved using the stochastic algorithm
of Chapter IV. The network is shown in figure 4 and the properties
of the arcs in table 2. Each arc is subject to at most 1 breakdown.
The decrease in capacity of an arc due to a breakdown is 1{p)
with probability p and 1(1 - p) with probability (1 - P)

Trese parameters of course are different for different arcs. The
problem was solved for B =é- and the results summarized in
tables 3 and 4. The path foundis S, 1, 4,5 witha breakdown
on (4,5) . The effective length of this path is -26-6l + 2 '!}B' -~ 4.9.
Since a reduction in the length of (4,§) is at least % and the
probability that this reduction is nct greater than % is -; > é .
it follows that the true valueof ¥ is 4.5 . Note that if S =-§

the effective length of this path and the true value of F for this

path {but not necessarily for the entire network) are both 4.5
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ARC OF DUAL

——-— ARC OF PRIMAL
@ NODE a OF DUAL

FIG. 4 NETWORK FOR EXAMPLE 2
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Table 2: Data for Network of Figure 4

Arc

(S,1)
(S, 2)
(8, 3)
(1,2)
(1, 4)
(2,3)
(2,5)
(3, 6)
(4, 5)
(4,3)
(5, 0)
(6.5)

P
1/2

1/4
1/3
1/4
1/5
1/2
1/5
1/6
1/3
1/3
1/4

1/2

Xp)

1
5/8
4/3

5

]

L/2

3/2

3/2

1/4

1(1-p)

3/4
3/4
11/6

I{a, b)
|
1

3

B =1/5

-53.

k(a,b,l)

7/8
23/32
5/3
17/4
8/5
5/8
14/5
13/12
4/3
11/6
13/4
2

o %(a,b,1)
1/64
13/4096
1/18
3/16
9/100
1/64
4/25
5/144
1/18
1/18
3/16
1/16



Table 3: Reecults of Algorithm for Example 2 - i =0

vl oo v b W N

Initial

2 J
(pu G, t) k)a’ 0

(0,0,-,-)
(c0, 00, -, =)
(o0, w0, -, -)
(00, 0, -, =)
(0, 00, =, -)
(0,00, -, =)
(0, w0, -, =)

(wv 0, -, ')

w

o n

Iteration 1

Iteration 2

(1 ol

(0,0, -,-)
(1,0,S,0)
(1,0,S,0)
(2,0,2,0)
(4,0,1,0)
(5,0,2,0)
(4,0, 3,0)
(6,0,4,0)
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(T o

(0,0,-,-)
(1,0,S,0)
(1,0,5,0)
(2,0,2,0)
(4,0,1,0)
(5,0,2,0)
(4,0,3,0)
(6,0,4,0)

’ tl k)i’ 0
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Table 4: Results of Algorithm for Example 2 - i =1

a (p,cz,hldi'l a (p.cz,t.koi.l

s (0,0,-,-) s (0,0,-,-)

1 (w,,-,-) 1 (1/8,1/64,8, 1)

2 (w,,-,-) 2 (9/32,13/4096,8, 1)
3 {0, 0,-,-) 3 (41/32,13/4096, 2, 0)
4 (w,0,-,-) 4 (12/5,9/100,1, 1)

5 (00,00, -, ~) 5 (11/5,4/25,2,1)

6 (0,0, -) 6 (35/12,5/144,3,1)

T (w,00,-,-) 3 (25/6,1/18,4, 1)

a (p,wz,hldi’l

S (0,0,-p:)

1 (1/8,1/64,,1)
(9/32, 13/4096, S, 1)
(41/32,13/4096,S, 1)
(12/5,9/100, 1, 1)
(11/5,4/25,2, 1)
(35/12,5/144, 3, 1)

nl oo v BN W N

(25/6,1/18,4,1)

Pathis S, 1, 4,5 with breakdown on (4,3)
Effective length of path is approximately 4.9 .

True value is 4.5 .
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LIST OF SYMBOLS

(a, b) Az:c joining a and b
i{a, b) Length of arc joining a and b
d(a, b) Deterministic decrease in length of (a,b) resulting

from a breakdown

(D, t,k)a i A label for the deterministic case

Da. i First component of (D,t, k)a.i
ta. i Second component of (D,t, k)a,i
k . Third component of (D, t, k) .
a,i a,i
I..a i Length of the shortest i-arc path from the source to
’ nocde a

n(a, b, i) Mean of the decrease in capacity of {a,b) due to i
breakdowns

cz(a,b, i} Variance of the decrease in capacity of (a,b) dueto i

breakdowns
(e, cz. t, k)i’ i A label for the stochastic case
P'i. i First component cf (u, crz. t, k)j" i
(cz)i’ i Second componernt of {u, cz, t, k)';' i
t‘i, i Third component of {u, o'z, t, k)i,i
;' i Fourth componeat of (u, 0'2, t, k)';’ i
[A, B) Cut set [A, B]

V(A, B] Value of cut set [A, BR]
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